

12 输入、9 输出视频开关阵列

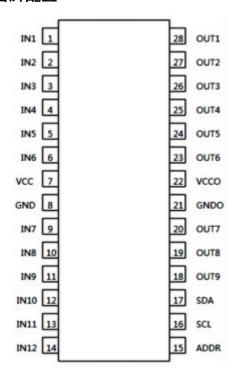
■ 产品概述

NV6501 提供 12 个输入端口和 9 个输出端口, 每个输入端口都可以被路由到 1 个或多个输出端口,但只能有 1 个输入端口可以被路由到多个端口。

NV6501 的输入端口提供钳位或偏置选项,以便处理同步或非同步的视频信号,钳位可将输出同步端电平设置为 300mV,而偏置选项则可在内部将输入偏置为 1. 25V 的非同步信号。所有的输出用来驱动一个 150 Ω的直流负载,每个输出可以提供0dB 或 6dB 的信号增益,输入到输出线路和输入偏置模式功能受 I²C 兼容数字接口控制


■ 主要特性

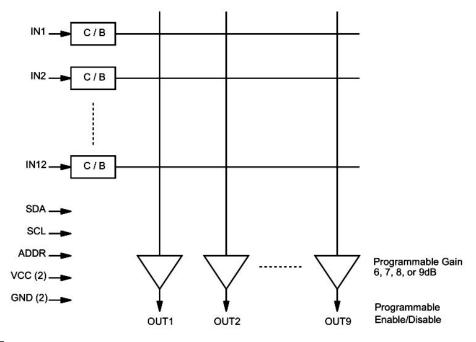
- 12×9 开关矩阵
- 支持 SD、PS 和 HD1080i/1080p 视频信号
- 输入钳位和偏置电路
- 直接驱动 75 Ω线缆, 无需外接元件
- 可编程的增益: +6, +7+8 或+9dB
- AC 或者 DC 耦合输入、输出
- 兼容 1²C 数字接口标准模式
- 单对单或者单对多的输入到输出的切换
- 3.3V 或 5V 电源供电
- 采用紧凑的 SSOP-28 无铅封装形式


■ 典型应用

- 车载娱乐视频系统
- HDTV、平板显示屏
- A/V 视频切换器
- 多媒体监视屏

■ 封装外形

● 管脚配置


■ 管脚描述

序号	管脚名字	功能描述	序号	管脚名字	功能描述
1	IN1	输入通道1	28	OUT1	输出通道1
2	IN2	输入通道2	27	OUT2	输出通道2
3	IN3	输入通道3	26	OUT3	输出通道3
4	IN4	输入通道5	25	0UT4	输出通道4
5	IN5	输入通道5	24	OUT5	输出通道5

6	IN6	输入通道6	23	OUT6	输出通道6
7	VCC	电源VCC	22	VCC0	电源VCC输出
8	GND	电源地	21	GNDO	电源地输出
9	IN7	输入通道7	20	OUT7	输出通道7
10	IN8	输入通道8	19	0UT8	输出通道8
11	IN9	输入通道9	18	OUT9	输出通道9
12	IN10	输入通道10	17	SDA	I ² C总线数据口
13	IN11	输入通道11	16	SCL	I ² C总线时钟
14	IN12	输入通道12	15	ADDR	设置l ² C总线地址

■ 功能框图

■ 功能说明

(一)数字接口

I²C 接口通常配置输出使能、输入到输出的路由和输入偏置。NV6501 的 I²C 的地址 0x06 (0000 0110) 当 ADDR 管脚是逻辑高电平时,偏移地址是 0x86 ((1000 0110)。8 位的数据和地址被写入到 NV6501 的 I²C 地址寄存器中达到访问控制的功能。每个输出都有独立的内部地址对应,每个输出地址包括输入选择位、输出增益调整、和输出放大使能。在一对多的路由中,超过 1 个的输出可以选择相同的输

入路线。当输出关闭时,输出处于高阻状态。可以并联多个 NV6501 建立更大的开关阵列,典型输出电源建立时间是小于 500ns。当他们保持原本的信号通路时,Clamp 和 Bias 控制位被写入到他们自己的内部地址中去,可以根据连接到 NV6501 上的输入信号来设置。

写未定义的地址是无效的。

输出控制寄存器值及其默认值:

控制名称	位宽	类型	默认	字节	描述
Enable	1 bits	Write	0	7	Channel Enable: 1=Enable, 0=Power Down
Gain	2 bits	Write	0	6:5	Channel Gain: 00=6dB, 01=7dB, 10=8dB, 11=9dB
Inx	5 bits	Write	0	4:0	输入选择:00000=0FF00001=IN1,00010=IN2.01100=IN12

注意:

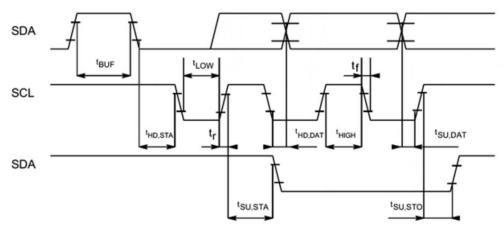
- 1. Power down places the output in a high-impedance state so multiple NV6501 devices may be paralleled. Power down also de-selects any input routed to the specified output.
- 2. When all inputs are OFF, the amplifier input is tied to approximately 150mV and the output goes to approximately 300mV with the 6dB gain setting.

输出控制寄存器 MAP:

名称	地址	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
OUT1	0x01	Enable	Gain1	Gain0	IN4	IN3	IN2	IN1	I NO
OUT2	0x02	Enable	Gain1	Gain0	IN4	IN3	IN2	IN1	I NO
OUT3	0x03	Enable	Gain1	Gain0	IN4	1N3	IN2	IN1	I NO
0UT4	0x04	Enable	Gain1	Gain0	IN4	IN3	IN2	IN1	I NO
OUT5	0x05	Enable	Gain1	Gain0	IN4	IN3	IN2	IN1	I NO
OUT6	0x06	Enable	Gain1	Gain0	IN4	IN3	IN2	IN1	I NO
OUT7	0x07	Enable	Gain1	Gain0	IN4	IN3	IN2	IN1	I NO
0UT8	0x08	Enable	Gain1	Gain0	IN4	IN3	IN2	IN1	INO
OUT9	0x09	Enable	Gain1	Gain0	IN4	IN3	IN2	IN1	INO

注意: 为提高 NV6501 的兼容性 IN4 总是写"0"

Clmap 控制寄存器值及默认值:

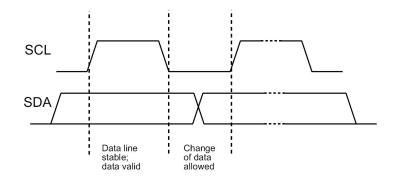

控制名称	位宽	类型	默认值	字节	描述
Clmp	1 bit	Write	0	7: 0	Clamp/Bias选择: 1=clamp, 0=Bias

Clmap 控制寄存器 MAP:

名称	地址	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CLAMP1	0x1D	CImp8	Clmp7	C1mp6	Clmp5	Clmp4	C1mp3	Clmp2	Clmp1
CLAMP2	0x1E	Resv'd	Resv'd	Resv'd	Resv'd	CImp12	CImp11	CImp10	CImp9

www. navota. com 3 纳瓦特

12C 总线时序图

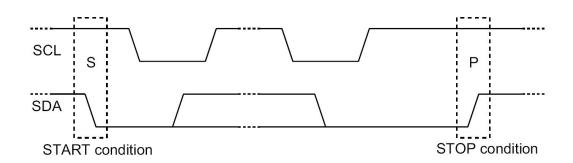

(二) I2C 格式

● 运行格式

I²C 兼容的格式严格遵守 I²C 标准模式的规范。个别地址能被写入,但是无法被读。传输格式包括两行: 一个连续的数据行和一个连续的时钟行。两行都必须外加上拉电阻。只有当总线空闲的时候数据转移才能启动。

● 位传输

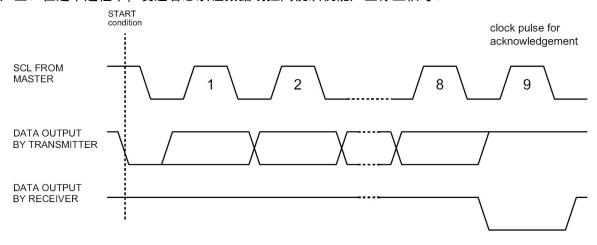
一个时钟脉冲传送一个数据位。当时钟信号为高电平的时候,SDA 上的数据必须保持不变。在这个时候的数据改变将被认为信号的改变。


位传输

● 起始和停止条件

数据线和时钟线在总线空闲的时候都要拉高。当时钟为高电平时,数据线产生一个从高电平到低电平的跳变,被默认为起始状态。相反,如果此时数据线产生一个从低电平到高电平的跳变,则会被默认为停止状态。

www. navota. com 4 纳瓦特

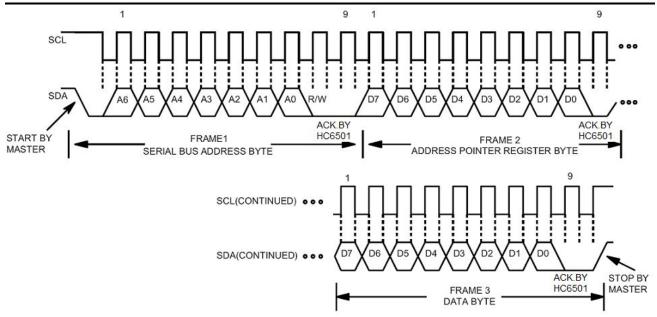


起始和停止条件

● 应答

数据位在起始和停止状态之间传输,不受发送者和接受者的约束。每8个字节之后跟随一个应答位。 当主机产生一个额外的和应答有关的时钟脉冲的时候,应答位通过发送者在总线上发出一个高电平信号。 从机地址必须要在应答信号确认后,再开始接受每一位数据。主机接收者一定会发出一个应答信号在接收 完发射的记录后。

应答的装置必须随应答时钟脉冲将 SDA 总线上的电位拉低,因此 SDA 信号在应答时钟脉冲期间是个稳定的低电平信号。主机接收需要发出一个数据结束信号给从机,这个信号通过不应答最后一位字节的时钟产生。在这个过程中,发送者必须让数据线拉高使从机能产生停止信号。


I2C 总线的应答

● I²C 总线协议

在任何一位数据被传送到 I^2C 总线上之前,器件要先响应定位的地址位。寻址过程总是紧跟着起始状态之后的。 I^2C 总线写入 NV6501 的数据配置如下:

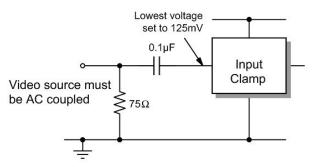
www. navota. com 5 纳瓦特

(三) 3.3V 操作:

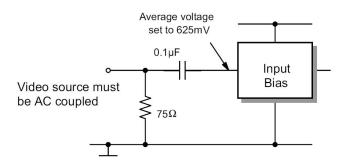
NV6501 在 3.3 V 的信号下运行。 V_∞=3.3 V, 数字输入 Vi I 为 0 V 到 1 V , Vih 为 1.8 V 到 2.9 V。

(四) 产品应用

● 输入钳位/偏置电路


NV6501 可以提供交流或者直流连接输入。内部 钳位和偏置电路用来支持交流输入。他们可以通过 I^2C 协议 CLMP 的字节位来选择。对直流输入来说,必须使用偏置模式。在这种结构下,输入在内部通过一个 $100k\Omega$ 的电阻偏置到 625 mV。输出电平必须设置在高于地 250 mV 与低于电源 500mV 之间。

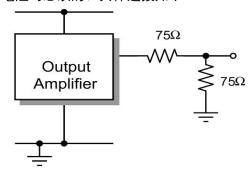
当交流信号连接到输入时, NV6501 使用钳位模式。作为同步和非同步的视频信号,输出管脚钳位电压如下表:


增益设置	钳位电压	偏置电压
6dB	300mV	1. 27V
7dB	330mV	1. 43V
8dB	370mV	1. 60V
9dB	420mV	1. 80V

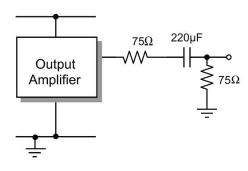
如果均衡交流输入信号被使用(Chroma, Pb, Pr, Cb, Cr),则偏置模式会被使用。平均的直流信号输出大约为 1.27V 增益为 6dB.。

下图为钳位模式输入电路,输入管脚上的交流 连接输入的电压受内部约束。

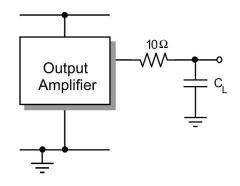
下图为偏置模式输入电路,输入管脚上的交流 连接输入的电压受内部约束。



● 输出配置


NV6501 输出可能是交流信号或者直流信号连接。直流信号连接负载能驱动一个 150 Ω 的负载。 交流信号输出可以驱动单一的或者两个 150 Ω 的视

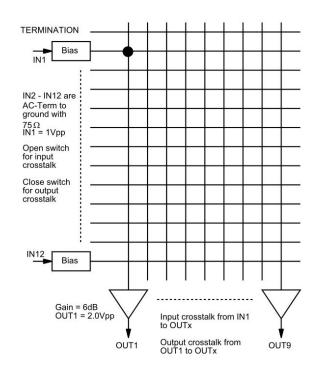
频负载。一个用来驱动数字低阻抗负载信号的外部 电阻时必须的。具体连接如下:



直流信号连接负载配置如下:

● 电容负载驱动

当驱动电容负载的时候需要使用一个 10 Ω 的串 联电阻做输出缓冲,如下图:

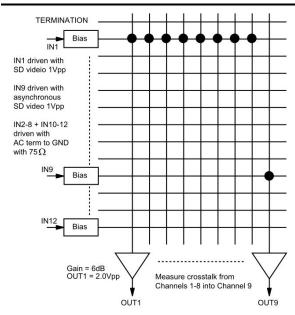


● 串扰

串扰是在 NV6501 的使用过程中需要优先考虑的事项。输入和输出串扰表现在两种主要的耦合模式的典型的应用程序中。输入串扰是输入管脚上的干扰和信号驱动一个开关时产生的干扰。它受临近的导线上的数据包框架控制。它能迅速减少干扰信号,就像使干扰信号更加远离临近的管脚的信号输入选择。输出串扰是从一个受到驱动的输出到另一个主动输出的耦合。它以逐渐增加阻抗的方法减少,

就像它主要由输出放大器间的源端和地端的耦合接造成。如果一个信号驱动一个开放式开关,那它的干扰主要是输入串扰。而如果它是通过主动输出驱动负载,那它的干扰主要是输出串扰。

输入和输出串扰的测试配置如下


对于输入干扰来说,开关打开,所有的输入为偏置模式。通道 1 输入以一个 1Vpp 的信号驱动,同时所有的其他输入的交流信号外接 75 欧电阻到地。输入可以通过任何一个输出端口进行输出,并且干扰也会对应的从 IN1 到任何一个输出的端口。

对输出串扰来说,开关是关闭的,从 0UT1 到任何一个输出的干扰是有规律的。

串扰从一个复合源到一个假定的通道是以下图的规则严格执行的。IN1 输入以一个 1Vpp 的脉冲源信号驱动,并且连接到输出端口 0UT1 到 0UT6。IN6输入以一个 2 级的异步灰度场视频信号为驱动,并且连接到 0UT6。所有其他的输入的交流信号外接 75欧电阻到地。影响到灰度场上的干扰有固定的标准来测量并计算,这个标准是 1Vpp 的输出在负载上的测量值。

如果并不是所有的输入和输出都需要使用时, 要避免使用临近的通道来减少串扰。

■ 直流参数

 $T_A = 25$ ° C, $V_{\infty} = 5$ V, $V_{NN} = 1$ Vpp, 输入偏置模式, 1 对 1 线路, 6 dB 增益, 所有交流输入加 0.1 μ F 电容, 未使用的交流输入端口通过 75 Ω 电阻接地, 所有的交流输出外加 220 μ F 和 150 Ω 电阻,除非另有特殊说明, 通常使用 400 kHZ 频率信号。

符号	参数	条件	最小	典型	最大	单位
1 _{cc}	电流(1)	无负载,所有输出有效		80	100	mA
V_{out}	视频信号输出范围			2. 8		Vpp
Roff	通道关闭输出高阻	输出关闭		3. 0		ΚΩ
VClamp	直流输出电平	钳位模式	0. 20	0. 30	0. 40	٧
Vbias	直流输出电平	偏置模式	1. 150	1. 250	1. 400	٧
PSRR	电源抑制比	所有通道		50		dB

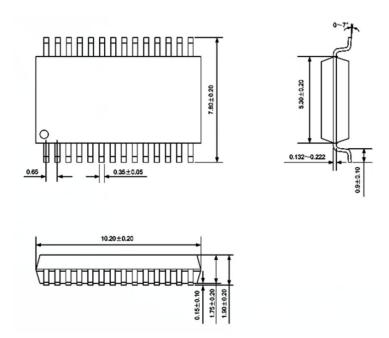
说明: 1. 25°C下的全测试。

■ 交流参数

 I_A = 25° C, V_{CC} = 5V, V_{IW} = 1Vpp,输入偏置模式,1 对 1 线路,6 dB 增益,所有交流输入加 0. 1 μ F,未使用的交流输入通过 75 Ω线缆连接到地,所有的交流输出外加 220 μ F 到 150 Ω线缆,通常情况使用 400 kHZ,除非另有特殊说明。

符号	参量	条件	最小	典型	最大	单位
AVsd	通路 GAIN Error	所有通路, 增益设置, 直流	-0. 2	0	+0. 2	dB
AVstep	通路 GAIN 步长	所有通路直流	0. 9	1. 0	1. 1	dB
f _{+1dB}	+1dB 带宽	<i>V_{OUT}</i> = 1.4 Vpp		65		MHZ
f _{-1dB}	-1dB 带宽	<i>V_{OUT}</i> = 1.4 Vpp		90		MHZ
fc	−3dB 带宽	<i>V_{OUT}</i> = 1.4 Vpp		115		MHZ
dG	差分增益	<i>V_{cc}</i> = 5.0 V , 3.58 MHz		0. 1		%

www. navota. com 8 纳瓦特


dф	差分相位	<i>V_{cc}</i> = 5.0 V, 3.58 MHz	0.	2	o
THD_{SD}	SD 输出失真	$V_{CUT} = 1.4 \text{ Vpp}, 5 \text{ MHz}, $ $V_{CC} = 5.0 \text{ V}$	0.	05	%
THD_{HD}	HD 输出失真	$V_{cc} = 1.4 \text{ Vpp}, 5 \text{ MHz},$ $V_{cc} = 5.0 \text{ V}$	0.	4	%
Xtalk1	输入串扰	1 MHz, V_{out} = 2Vpp(2)	-7	77	dB
Xtalk2	输入串扰	15 MHz, <i>V_{our}</i> = 2Vpp(2)	-0	52	dB
Xtalk3	输出串扰	1 MHz, V_{out} = 2Vpp(3)	-8	31	dB
Xtalk4	输出串扰	15 MHz, <i>V_{our}</i> = 2Vpp (3)	-(52	dB
Xtalk5	多通路串扰	Standard Video , $V_{out} = 2Vpp(4)$		50	dB
SNRsd	信噪比(5)	NTC-7 Weighting , 4.2 MHz LP, 100 kHz HP	7	8	dB
Vnoise	通路噪音	输入范围 400KHZ 到 100MHZ	2	0	nv/\sqrt{Hz}
AMPon	放大器复位时间	I ² C 配置	30	00	ns

说明:

- 1. 25°C下的100%测试。
- 2. 临近的输入配对给临近的输出。通过1个开放式的开关串扰输入。
- 3. 临近的输入配对给临近的输出。通过1个封闭式的开关串扰输入。
- 4.8个同步开关输出的干扰对于单个的异步开关输出的干扰。
- 5. 信噪比=20*log(714mV / rms noise)。

■ 封装尺寸图(单位:mm)

• <u>SS0P28</u>

